Стационарный пуассоновский поток отказов. Определение Пуассоновского потока. Свойства Распределение интервалов между событиями

22.02.2024

Если число n испытаний достаточно велико, а вероятность p наступления события А в независимых испытаниях мала, то для нахождения вероятности используется теорема Пуассона : Если в n независимых испытаниях вероятность p наступления события А в каждом из них постоянна и мала, а число испытаний достаточно велико, то вероятность того, что событие А наступит k раз, вычисляется по формуле , где .

Эта формула называется формулой Пуассона .

Пример 15 . Вероятность попадания в самолёт при каждом выстреле из пулемёта равна 0.001. Производится 3000 выстрелов. Найти вероятность попадания в самолёт: а) один или два раза; б) хотя бы один раз.

Решение . По условию примера n =300, p =0.001, .

а) Обозначим событие A={попадание в самолёт один или два раза}. Тогда .

б) Обозначим событие B={попадание в самолёт хотя бы один раз}. Тогда .

Потоком событий называется последовательность событий, которые наступают одно за другим в случайные моменты времени.

Например, поток вызовов в сфере обслуживания (ремонт телевизоров, вызовы скорой помощи и др.), поток вызовов на телефонной станции, отказ в работе отдельных частей некоторой системы и т.д.

Поток называется простейшим , если выполняются следующие условия:

Вероятность появления события зависит от длины промежутка времени t ;

Вероятность появления числа событий на любом промежутке времени не зависит от того, какое число событий наступило до начала этого промежутка;

Вероятность наступления двух или большего числа событий за достаточно малый промежуток времени мала и чем меньше , тем меньше становится вероятность.

При выполнении этих условий справедливо следующее утверждение:

Вероятность того, что случайное событие за время t наступит k раз, определяется по формуле

,

где - среднее число событий, наступающих в единицу времени.

Пример 16 . На ткацких станках, обслуживаемых ткачихой, в течение часа происходит 90 обрывов нити. Какова вероятность того, что за 4 минуты произойдёт: 1) один обрыв; 2) хотя бы один обрыв.

Решение . По условию t =4. Среднее число обрывов за одну минуту равно . Тогда .



1) . 2) .

Вопросы для самоконтроля знаний

1. Что называется суммой совместных событий?

2. Что называется суммой несовместных событий?

3. Как формулируется теорема сложения вероятностей несовместных событий?

4. Чему равна сумма вероятностей противоположных событий?

5. Что называется произведением двух событий?

6. Какие события называются независимыми?

7. Как формулируется теорема умножения вероятностей независимых событий?

8. Какие события называются зависимыми?

9. Что называется условной вероятностью?

10. Как формулируется теорема умножения вероятностей зависимых событий?

11. Что называется полной вероятностью события и как записывается формула полной вероятности?

12. Как записывается формула Байеса?

13. Какие испытания называются независимыми и как записывается формула Бернулли?

14. Как формулируется локальная теорема Лапласа?

15. Как формулируется интегральная теорема Лапласа?

16. Как формулируется теорема Пуассона?

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M , (a£x£b)

Применяя для моделирования метод обратной функции, получим алгоритм вычисления первого момента времени

где u получают от ДСЧ.

Окончательно имеем следующий алгоритм моделирования равномерного потока:

1) момент времени t 1 наступления первого события вычисляется по формуле

2) для последующих моментов времени производимы вычисления по формуле

t j =t j -1 + a + (b-a)u;

Величина u вырабатывается ДСЧ.

Поток Эрланга порядка k

Потоком Эрланга k-го порядка называют поток событий, получающегося "прореживанием" простейшего потока, когда сохраняется каждая k-я точка (событие) в потоке, а все промежуточные выбрасываются.

Интервал времени между двумя соседними событиями в потоке Эрланга k-го порядка представляет собой сумму k независимых случайных величин Z 1 ,Z 2 ,...,Z k , имеющих показательное распределение с параметром λ:

Закон распределения случайной величины Z называется законом Эрланга k-го порядка и имеет плотность

, (x > 0).

Математическое ожидание и дисперсия случайной величины Z соответственно равны:

M[Z]=k/ ; D[Z]=k/ 2 .

На основе определения потока Эрланга получается простой способ моделирования: прореживается пуассоновский поток с интенсивностью = /k, т.е. в пуассоновском потоке допускаем моменты времени с номерами 1,2,...,k-1, а k-й момент оставляем, т.к. он принадлежит новому потоку и т.д. Таким образом, моменты времени потока Эрланга вычисляются по формулам:



где - интенсивность потока Эрланга k-го порядка, u j - случайные числа от ДСЧ.

3. ОБЪЕКТЫ И СРЕДСТВА ИССЛЕДОВАНИЯ

Объектами исследования в лабораторной работе являются потоки событий, образованные слиянием нескольких потоков с известными характеристиками.

В процессе имитации потоков событий используются различные методы сортировки.

Одним из простых методов сортировки является метод пузырька (BUBBLE) который позволяет массив A, содержащий N элементов, расположить, например, в возрастающем порядке. Соответствующий алгоритм приведен на рис.4.1. Однако. Более эффективным методом для данного типа задач будет метод вставки.

процедура BUBBLE(A, N);

Цикл I=1,N1;

Если A(K) £ A(J) то идти к 20;

Если (K³1), то идти к 10;

Рис.4.1. Подпрограмма сортировки методом пузырька

В лабораторной работе могут быть использованы и другие более эффективные методы сортировки (например, адресная сортировка и т.п.).

4. ПОДГОТОВКА К РАБОТЕ

4.1. Ознакомиться с основными типами потоков событий.

4.2. Ознакомиться с методами моделирования пуассоновского, равномерного потока событий и потока Эрланга порядка k.

4.3. Ознакомиться с методами сортировки массивов чисел.

5. ПРОГРАММА РАБОТЫ

В некоторую систему массового обслуживания по различным каналам поступают заявки, образующие поток событий заданного типа. На входе системы потоки сливаются в один. Составить алгоритм и программу имитации результирующего потока, указанного в варианте.

Первые 100 моментов времени поступления заявок в результирующем потоке вывести на печать. По первым 1000 заявкам рассчитать оценку средней интенсивности потока. Найденную оценку сравнить с теоретическим значением интенсивности потока.

5.1. Поток образован слиянием трёх пуассоновских потоков событий с интенсивностями 1 , 2 , 3 (1/с) (табл.5.1.).

Таблица 5.1.

Вариант
1 2,5 1,5
2 0,5
3 0,5 0,5 0,5

5.2. Поток образован слиянием двух равномерных потоков с параметрами a 1 , b 1 и a 2 , b 2 (с) (табл. 5.2.).

Таблица 5.2.

Вариант
a 1 1,5
b 1 2,5 1,5
a 2 0,5
b 2

5.3. Поток образован слиянием пуассоновского потока с интенсивностью (1 /с) и равномерного потока с параметрами a и b (с) (табл.5 3.).

Таблица 5.3.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Дать определение потока событий.

6.2. Как строится вероятностное описание потока событий.

6.3. В чём состоит способ моделирования стационарного потока с ограниченным последствием.

6.4. Охарактеризовать пуассоновский поток и способ его моделирования.

6.5. Охарактеризовать равномерный поток и способ его моделирования.

6.6. Дать характеристику потока Эрланга k-го порядка и метода его имитации.

6.7. Привести характеристики потока событий, исследованного в лабораторной работе.

Лабораторная работа 6

Пусть в предприятие сервиса через случайные интервалы времени обращаются клиенты, при этом поток заказов однороден (однотипные заказы) и в единицу времени обращается X клиентов. Вероятность прихода клиента не зависит от числа уже обратившихся клиентов, вероятность того, что одновременно обратятся сразу два клиента, мала. Кроме того, число обратившихся клиентов зависит от рассматриваемого интервала времени и не зависит от начала рассмотрения.

Тогда модель математически можно описать следующим образом. Пусть р к (х) означает вероятность прибытия к клиентов в интервале времени длительностью х, p 0 (t ) - вероятность того, что за время (0, /) не будет ни одного клиента, что, согласно (14.2), соответствует вероятности того, что интервал времени до прибытия первого клиента больше, чем t.

Рис. 14.2.

1. Если ijH т2 два неперекрывающихся интервала (рис. 14.2), то предположение о независимости имеет вид:

2. Среднее значение времени между прибытиями клиентов равно

3. Вероятность того, что клиент не придет в течение интервала времени нулевой длительности,

4. Вероятность того, что клиент не придет в течение интервала времени бесконечной длительности,

Такой поток заказов считается простейшим. Поток заказов называется простейшим, или пуассоновским, если он обладает тремя свойствами: стационарен, ординарен и без последействия.

Свойство стационарности к событий потока на любом интервале времени т зависит только от числа к и длительности т.

Свойство ординарности характеризуется тем, что вероятность появления более одного события за малый интервал времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Свойство отсутствия последействия характеризуется тем, что вероятность появления к событий потока на любом интервале времени т не зависит от того, появились или не появились события в моменты, предшествующие началу рассматриваемого интервала.

Пуассоновский поток играет фундаментальную роль в теории систем массового обслуживания, как нормальный процесс в статистике. Большинство других процессов, используемых в системах массового обслуживания, получаются путем модификации пуассоновского.

Рис. 14.3.

Часто на практике трудно установить, обладает ли поток перечисленными выше свойствами. В частности, установлено, что если поток представляет собой сумму (суперпозицию) очень большого числа независимых стационарных потоков, влияние каждого из которых на весь суммарный поток ничтожно мало, то этот суммарный поток при условии его ординарности близок к простейшему. На рис. 14.3 показан пример образования суммарного потока. Указанное свойство сродни центральной предельной теореме нормального распределения.

Рис. 14.4.

Случайный процесс N(t), описывающий такой поток и соответствующий числу прибывших клиентов, является дискретным и в случайные моменты времени может принимать только целочисленные значения. Процесс нестационарный, так как может только возрастать. Реализация процесса показана на рис. 14.4.

В течение малого интервала времени процесс может остаться в том же состоянии или изменить его (увеличить число клиентов на единицу). Другими словами, процесс из состояния Sj может перейти только в состояние $ ,. Пусть вероятность изменения состояния в малом интервале времени dx равна A,dx+o(dx), где А>0. Вероятность сохранения прежнего состояния l-^dx + o(dx). Так как поток ординарен, вероятность смены состояния более одного раза в интервале (/, t+ dx) есть бесконечно малая величина o(dx) высшего порядка по сравнению с dx.

Обозначим вероятность того, что N(t) = n, как р п (х), где x - t-t 0 - интересующий нас интервал времени, т.е. процесс за время х совершил п скачков. Пусть р п (х) зависит только от х и не зависит от начального момента t 0 , от которого отсчитывается х. Поэтому, несмотря на то что процесс нестационарный, случайное число появления запросов на сервис N(t) = п за интервал времени х = t-t Q является постоянной (стационарной) величиной.

Предположим также, что N(t ) не зависит от числа реализаций события, произошедших в любые интервалы времени, предшествующие т, т.е. процесс обладает свойством отсутствия последействия. Вычислим вероятность p n (x + dx) того, что в интервале (x+dx) произойдет п событий.

Очевидно, для того чтобы в интервале (х+dx) произошло п событий, должны совершиться два взаимоисключающих события:

О произошло п событий в интервале х и 0 событий в интервале dx. Вероятность этого в силу независимости равна р п (т)(1 - Xdx);

О произошло п - 1 событий в интервале т и 1 событие в интервале dx. Вероятность этого равна р { (x)A.dx.

Таким образом,

Перенесем в левую часть р п (х) и поделим на dx:

Перейдя к пределу при dx -? 0, получим дифференциальное уравнение:

Рассчитаем вероятность /? 0 (х)того, что на интервале (x+dx) событие не наступит ни разу. Ясно, что для этого событие не должно наступить в интервале х и в интервале dx. Вероятность этого равна /? 0 (х)(1-Ых).

Таким образом,

Соответствующее дифференциальное уравнение имеет вид:

Объединив (14.12) и (14.13) и положив начало рассмотрения процесса с момента^ = 0, а х = t, получим систему дифференциальных уравнений:

Зададимся следующими начальными условиями:

которые означают, что в начальный момент t 0 событие не произошло.

Как видно, уравнения (14.14) и (14.15) являются частным случаем уравнений Колмогорова-Чепмена в дифференциальной форме (13.11) для абсолютных вероятностей и описанный процесс является марковским.

Для нахождения общего решения системы удобно использо-

вать преобразование Лапласа. Пусть p{i) Применяя преобразование Лапласа к обеим частям уравнения (14.14) системы с учетом начальных условий (14.16), получаем

По теореме о начальном состоянии оригинала

По теореме о конечном состоянии оригинала

Полученные характеристики соответствуют рассматриваемой модели.

Обратное преобразование Лапласа (14.17) будет

Применяя преобразование Лапласа к обеим частям (14.15) с учетом начальных условий (14.16), получаем

Согласно (14.17) и (14.18),

По таблице преобразований Лапласа

Используя (14.20), из (14.19) получаем распределение Пуассона

которое дает вероятность того, что в момент t > 0 система находится в состоянии N(f) = п или что за время произойдет п изменений.

Рис. 14.5. Независимые пуассоновские процессы Хт { и Хх 2

Таким образом, число событий внутри фиксированного интервала в пуассоновском потоке распределено по закону Пуассона. При этом число событий N(t { ,t 2) и N{t 3 ,t 4) на неперекрываю- щихся интервалахT t = t 2 -1 { и т 2 = t 4 -1 3 , где t { независимы (рис. 14.5).

На рис. 14.6 показаны плотности вероятности прибытия 0,1,2, 3, 4 клиентов при поступлении их по пуассоновскому закону для интенсивностей X = 0,5 (рис. 14.6, а) и X = 1 (рис. 14.6, б). Как видно, с ростом интенсивности повышается вероятность прибытия клиентов в первые моменты времени.

Вероятность того, что за время t поступит не более п заказов, определяется функцией распределения

Рис. 14.6. Плотность вероятности Пуассона при X = 0,5 (а) и А. = 1 (б) 1-р(0У, 2-р{) 3-р(2У, 4-р(3);5-р(4)

Согласно (11.41), производящая функция для распределения Пуассона (14.21) по дискретному значению п

(14.23)

Математическое ожидание числа прибывших клиентов, распределенных по Пуассону, в соответствии с (11.43)

Таким образом, среднее число событий N(t) в интервале / равно U.

Дисперсия, характеризующая рассеивание числа заказов в интервале /, согласно (11.44),

Как видно, дисперсия простейшего потока равна математическому ожиданию. Данное свойство может служить критерием соответствия потока заказов простейшему.

Формула Пуассона (14.21) отражает все свойства простейшего потока. В самом деле, из формулы видно, что вероятность появления п событий за время t при заданной интенсивности А, является функцией только /, что характеризует свойство стационарности. В формуле не используется информация о появлении событий до начала рассматриваемого промежутка, что характеризует свойство отсутствия последействия. Если и т 2 два неперекрывающихся интервала времени, то свойство независимости имеет место, так как

Вероятность появления более одного события за малый интервал времени р (/) = (А,/) 2 /2!. Эта вероятность пренебрежимо мала

по сравнению с вероятностью наступления одного события, равной АЛ, что характеризует свойство ординарности потока.

Найдем далее для пуассоновского процесса распределение вероятностей интервалов между двумя последовательными событиями. Пусть случайная величина Т характеризует длину этих интервалов. Обозначим через F{x) функцию распределения этой случайной величины. По определению, F(x) - это вероятность того, что Т Вероятность того, что в интервале времени не произошло событие, если оно произошло в момент t 0 , равна безусловной вероятности

т.е.

Следовательно, функция распределения длины интервала между двумя последовательными событиями имеет вид показательного закона:

Продифференцировав (14.25), получим соответствующую плотность вероятности интервала между двумя событиями:

С учетом (14.26) и (14.24) вероятность того, что заказ появится внутри интервала (x,T+dx), можно записать как

т.е. вероятность поступления заказа внутри интервала (x,T + dx) равна A,dx, не зависит от х и пропорциональна dx. Величина X называется параметром показательного закона. Поскольку X не зависит от длительности интервала х, экспоненциальное распределение не имеет памяти и не имеет возраста (см. рис. 10.7).

Таким образом, для простейшего потока с интенсивностью X случайная величина Т, представляющая интервал между соседними заказами (событиями), имеет экспоненциальное распределение с функцией распределения (14.25) и плотностью распределения (14.26). Если время между прибытиями клиентов имеет экспоненциальное распределение со средним значением Т, тогда случайная переменная N(t), представляющая число клиентов, прибывших в фиксированный интервал , имеет пуассоновское распределение с параметром Xt, где Х=/Т. В силу марковости процесса интервалы между событиями взаимно независимы. Отсюда процесс, у которого интервалы между событиями взаимно независимы и подчинены показательному закону, является пуассоновским процессом.

В соответствии с разностными уравнениями (14.11) можно изобразить граф пуассоновского процесса (рис. 14.7). Вершины графа обозначают состояния системы, которые для пуассоновского потока клиентов соответствуют числу поступивших клиентов. Над дугами показаны вероятности перехода.

Рис. 14.7.

При большом промежутке времени вероятность перехода в соседнее состояние стремится к единице, а вероятность остаться в том же состоянии - к нулю и граф на рис. 14.7 преобразуется в граф на рис. 14.8. Над дугами графа показана интенсивность, с которой осуществляются переходы. Время нахождения процесса в состоянии случайно и распределено по экспоненциальному закону с математическим ожиданием /Х. В среднем через время 1Д система переходит в следующее состояние, что соответствует поступлению очередного клиента. Так как процесс ординарен, переход возможен только в соседние состояния. Передаточная функция дуги соответствует преобразованию Лапласа экспоненциального распределения (10.47).

На практике чаще всего ограничиваются рассмотрением простейшего (пуассоновского) потока заявок.

Определение. Поток событий, обладающий свойствами ординарности, стационарности и отсутствия последействия , называется простейшим (или стационарным пуассоновским) потоком . Для простейшего потока событий вероятность того, что на участке времени длины t наступит ровно k событий, имеет распределение Пуассона и определяется по формуле:

Р{X(t,t) = k} = a k e -a /k! (k=0, 1, 2,…),

где а = lt , l – интенсивность потока.

Физический смысл интенсивности потока событий – это среднее число событий, приходящееся на единицу времени (число заявок в единицу времени), размерность – 1/время.

Простейшим этот поток назван потому, что исследование систем, находящихся под воздействием простейших потоков, проводится самым простым образом.

Распределение интервалов между заявками для простейшего потока будет экспоненциальным (показательным) с функцией распределения и плотностью , где – интенсивность поступления заявок в СМО.

Рассмотрим основные свойства простейшего потока:

Стационарность;

Ординарность;

Отсутствие последействия.

Стационарность . Свойство стационарности проявляется в том, что вероятность попадания того или иного числа событий на участок времени зависит только от длины участка и не зависит от его расположения на оси . Другими словами, стационарность означает неизменность вероятностного режима потока событий во времени. Поток, обладающий свойством стационарности, называют стационарным . Для стационарного потока среднее число событий, воздействующих на систему в течение единицы времени, остаётся постоянным. Реальные потоки событий в экономике предприятия яв­ляются в действительности стационарными лишь на ограниченных участках времени.

Ординарность. Свойство ординарности потока присутствует, если вероятность попадания на элементарный участок времени двух и более событий пренебрежимо мала по сравнению с длиной этого участка. Свойство ординарности означает, что за малый промежуток времени практически невозможно появление более одного события. Поток, обладающий свойством ординарности, называют ор­динарным. Реальные потоки событий в различных экономических системах либо являются ординарными, либо могут быть достаточно просто приведены к ординарным.

Отсутствие последействия . Данное свойство потока состоит в том, что для любых непересекающихся участков времени количество событий, попадающих на один из них, не зависит от того, сколько событий попало на другие участки времени. Поток, обладающий свойством отсутствия последействия, называют потоком без последействия .


Поток событий, одновременно обладающий свойствами стационарности, ординарности и отсутствия последействия, называется простейшим потоком событий.

2.6. Компоненты и классификация

моделей систем массового обслуживания (СМО)

Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудниками Копенгагенской телефонной компании, датским учёным А. К. Эрлангом (1878–1929 гг.) в период между 1908 и 1922 гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, работа морских и речных портов, магазинов, терминальных классов, радиолокационных комплексов, радиолокационных станций и т. д. и т. п. может быть описана в рамках ТСМО.

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить посты технического обслуживания автомобилей; любое предприятие сферы сервиса; персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач; аудиторские фирмы; отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчётности предприятий; телефонные станции и т. д.

Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания. Причём на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, наладки и т. д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

Основными компонентами системы массового обслуживания любого вида являются:

Входной поток поступающих требований или заявок на обслуживание;

Дисциплина очереди;

Механизм обслуживания.

Входной поток требований . Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идёт о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди – это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

– первым пришёл – первый обслуживаешься (FIFO);

– пришёл последним – обслуживаешься первым (LIFO);

– случайный отбор заявок (RANDOM);

– отбор заявок по критерию приоритетности (PR);

– ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания или количеством мест, что ассоциируется с понятием «допустимая длина очереди»).

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента, и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Cистема обслуживания может иметь не один канал обслуживания, а несколько – система такого рода способна обслуживать одновременно несколько требований. В этом случае, если все каналы обслуживания предлагают одни и те же услуги, можно утверждать, что имеет место параллельное обслуживание – многоканальная система.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно.

Рассмотрев основные компоненты систем обслуживания, можно утверждать, что функциональные возможности любой систе­мы массового обслуживания определяются следующими основными факторами:

Вероятностное распределение моментов поступлений заявок на обслуживание (единичных или групповых);

Вероятностное распределение времени продолжительности обслуживания;

Конфигурация обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

Количество и производительность обслуживающих каналов;

Дисциплина очереди;

Мощность источника требований.

В системах с ограниченным ожиданием может ограничиваться длина очереди, время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоявшая в очереди, ждёт обслуживание неограниченно долго, т. е. пока не подойдёт очередь.

Приведённая классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определённого момента, после чего система начинает работать как система с отказами.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью её функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

Вероятность немедленного обслуживания поступившей заявки;

Вероятность отказа в обслуживании поступившей заявки;

Относительная и абсолютная пропускная способность системы;

Средний процент заявок, получивших отказ в обслуживании;

Среднее время ожидания в очереди;

Средняя длина очереди;

Средний доход от функционирования системы в единицу времени.

Случайный характер потока заявок и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса, происходящего в системе массового обслуживания (СМО), различают марковские и немарковские. Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

· системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и покидает очередь;

· системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Для указания типа СМО используются общепринятые обозначения Кендалла – Баша: X/Y/Z/m ,

где X – вид закона распределения интервалов поступления заявок;
Y – вид закона распределения времени обслуживания заявок;
Z – число каналов;

m – число мест в очереди.

В обозначениях вида закона распределения буква M соответствует экспоненциальному распределению (от слова Марковиан ), буква E – распределению Эрланга, R – равномерному распределению и D – детерминированной величине.

Например, запись M/M/1 означаетодноканальную систему с экспоненциальными распределениями времени поступления и обслуживания заявок (М – марковская) без очереди.

2.7. Расчёт основных характеристик СМО

на основе использования их аналитических моделей

Рассмотрим такие СМО, в которых возможные состояния системы образуют цепь и каждое состояние, кроме исходного и последнего, связано прямой и обратной связью с двумя соседними состояниями. Такая схема процесса, протекающего в системе, называется схемой «гибели и размножения». Термин ведёт начало от биологических задач, процесс описывает изменение численности популяции.

Если в такой системе все потоки, переводящие систему из состояния в состояние пуассоновские, то процесс называется марковским случайным процессом «гибели и размножения».

Заметим, что в таких системах все состояния являются существенными, а значит, существуют финальные вероятности состояний, которые можно найти из линейной системы уравнений Эрланга.

На практике значительная часть систем (СМО) может описываться в рамках процесса «гибели и размножения».

Рассмотрим некоторые типы таких систем:

а) одноканальные с отказами (без очереди);

б) одноканальные с ограниченной очередью;

в) многоканальные с отказами (без очереди);

г) многоканальные с ограниченной очередью.



© imht.ru, 2024
Бизнес-процессы. Инвестиции. Мотивация. Планирование. Реализация