От чего зависит предел выносливости. Определение предела выносливости. Пластическая деформация и рекристаллизация

21.05.2024

Многие детали машин и механизмов в процессе эксплуатации подвергаются повторно-переменным (циклическим) напряжениям, что может вызвать образование трещин и разрушение даже при напряжениях ниже 0,2.

Разрушение металлов и сплавов в результате многократного повторно-переменного напряжения носит название усталости, а свойство металлов сопротивляться усталости называетсявыносливостью (ГОСТ 23207-78).

Природа усталостного разрушения заключается в следующем. Металлы, как известно, состоят из большого числа различно ориентированных зерен, которые вследствие анизотропии оказывают неодинаковое сопротивление действию внешних сил. Зерна, неблагоприятно расположенные по отношению к направлению действия внешних сил, оказываются слабыми, и пластичная деформация в них произойдет при напряжениях ниже предела текучести, в других же зернах приложенная нагрузка вызовет лишь упругую деформацию.

Многократная пластическая деформация при действии повторно-переменных нагрузок приводит к образованию микротрещины, которая, увеличиваясь, превращается в зону усталостного разрушения.

Исследования на усталость проводят для определения предела выносливости , под которым понимают максимальное напряжение цикла, которое выдерживает материал, не разрушаясь при достаточно большом числе повторно-переменных нагружений (циклов).

Предел выносливости при симметричном цикле обозначается -1. Предел выносливости чаще определяют на вращающемся образце (гладком или с надрезом) с приложением изгибающей нагрузки по симметричному циклу.

Для этого используют не менее десяти образцов, каждый из которых испытывается до разрушения только на одном уровне напряжений.

По результатам испытаний отдельных образцов в координатах «напряжение-число циклов» строят кривую, по которой и определяют предел выносливости -1 (рис. 21).

Для тех металлов и сплавов, у которых нет горизонтального участка выносливости, испытания, ограничивают определением «ограниченного предела выносливости», который для сталей равен 10 млн., а для цветных сплавов 100 млн. циклов.

Рис. 21.Схема испытания и кривая выносливости

Порядок выполнения работы

    Установить длину рабочей части и площадь поперечного сечения образца до испытания.

    Провести испытания образца на растяжение с записью диаграммы.

    По диаграмме растяжения определить предел пропорциональности, предел текучести, предел прочности.

    Определить относительное удлинение и сужение образца.

    Провести испытания на ударную вязкость и определить ее значение.

Контрольные вопросы

    Виды механических испытаний металлов.

    Какие характеристики определяют при испытании на растяжении?

    Что такое ударная вязкость?

    Как проводятся испытания на ударную вязкость?

    Что такое усталость, выносливость и предел выносливости металлов?

    Как определяется предел выносливости?

ЛАБОРАТОРНАЯ РАБОТА №4

Влияние холодной пластической деформации на структуру и свойства стали

Цель работы: изучить влияние холодной пластической деформации на структуру и свойства (твердость) малоуглеродистой стали; изучить влияние температуры нагрева на структуру и свойства (твердость) холоднодеформированной малоуглеродистой стали.

Приборы и оборудование: набор готовых микрошлифов, микроскоп МИМ-7, твердомеры, штангенциркуль.

Пластическая деформация и рекристаллизация

Холодная пластическая деформация вызывает в металле структурные изменения, а, следовательно, и изменение свойств металла.

Явления, возникающие в металле при пластической деформации, многообразны. Условно их можно разделить на три группы:

а) изменение формы и размеров кристаллов (зерен);

б)изменение их кристаллографической пространственной ориентировки;

в) изменение тонкого внутреннего строения каждого кристалла.

Пластическая деформация осуществляется путем скольжения (сдвига) или двойникования. Скольжение (сдвиг) состоит в перемещении одной части кристалла относительно другой по определенным плоскостям и направлениям. Двойникование осуществляется путем поворота некоторого объема кристалла на определенный угол.

Многочисленные исследования показывают, что скольжение и поворот осуществляются по плоскостям и направлениям с наиболее плотной упаковкой атомов. Чем больше в металле таких плоскостей, тем выше его способность к пластической деформации. Металлы и сплавы с кубическими решетками К12 и К8 имеют большую пластичность, чем металлы и сплавы с гексагональными решетками Г12 и Г6.

Вдоль плоскостей, по которым произошел сдвиг, и в прилегающих к ним объемах происходит искажение кристаллической решетки, которое вызывает упрочнение сплава. Поэтому последующее скольжение возникает уже в другой параллельной плоскости и при большем напряжении.

Процесс скольжения нельзя представлять себе как одновременное перемещение всех атомов, находящихся в плоскости скольжения, так как для группового перемещения атомов требуются напряжения в сотни раз большие, чем напряжения скольжения. Например, для монокристаллов железа наименьшая теоретическая прочность скольжения равна 23000 МПа, а реальная прочность скольжения составляет 290 МПа, что почти в 100 раз меньше теоретической; для алюминия реальная прочность почти в 500 раз меньше теоретической, для меди в 1540 раз.

Такое большое расхождение между теоретической и реальной прочностью металлов вызвано наличием в реальных кристаллах многочисленных дефектов кристаллической решетки.

Сравнительно легкое перемещение атомов по плоскостям скольжения объясняется наличием в этих плоскостях линейных дефектов – дислокаций. Дислокации бывают линейные и винтовые. Образование линейной дислокации можно представить как внедрение в идеально построенный кристалл лишней кристаллографической полуплоскости атомов, называемой экстраплоскостью (рис. 22).

Рис. 22. Схема образования линейных дислокаций:

АВ – линия дислокации; CD – плоскость скольжения линейной дислокации

Нижний край экстраплоскости АВ вызывает большое искажение в кристаллической решетке, которое называется линией дислокации. Вокруг линии дислокации концентрируются все упругие искажения кристаллической решетки. Над линией дислокации, где имеется экстраплоскость, кристаллическая решетка сжимается, а под линией дислокации, где отсутствует экстраплоскость, растягивается. Длина дислокации может достигать нескольких тысяч межатомных расстояний решетки.

При движении дислокаций происходит смещение атомов на величину, меньшую атомного расстояния, для чего требуются небольшие усилия. Происходит это потому, что атомы, лежащие на линии дислокации, находятся в неравновесном состоянии; смещенные из своих нормальных положений дислоцированные атомы перейдут в равновесное положение даже при небольшом напряжении, а атомы из нормального положения в дислоцированные.

В процессе пластической деформации происходит не только движение имеющихся в кристалле дислокаций, но и образуется большое количество новых дислокаций в различных кристаллографических плоскостях и направлениях. Если на пути движения дислокации встречаются препятствия в виде другой дислокации или дефектов другого вида, то процесс движения дислокации затормаживается, и для преодоления этих препятствий требуются большие внешние усилия.

Плотность дислокаций в недеформированном металле может составлять 10 6 –10 8 дислокаций в 1 см 2 , после деформации в этом же металле она достигает 10 10 –10 12 дислокаций в см 2 .

Таким образом, создание дислокаций – одно из важнейших явлений, возникающих при пластической деформации.

При определенной (критической) плотности дислокаций и других дефектов и искажений кристаллической решетки прочность материала увеличивается, так как создаются препятствия для свободного движения дислокаций. Чем больше искажена решетка на межзеренных и межблоковых границах, тем больше затруднено скольжение по кристаллографическим плоскостям и направлениям.

При пластической деформации поликристаллического тела зерна деформируются по разному: в первую очередь будут деформироваться те зерна, в которых плоскости легкого скольжения наиболее благоприятно расположены по отношению к приложенной силе.

В процессе развития пластической деформации изменяется форма зерен, наблюдаются повороты зерен относительно друг друга, дробление зерен и образование их определенной кристаллографической ориентации – возникает текстура деформации. По отношению к действующей силе зерна вытягиваются при растяжении и располагаются перпендикулярно к ней при сжатии. Металл приобретает как бы волокнистую структуру. Линиями волокон являются всевозможные примеси, расположенные по границам зерен. Текстурованный материал анизотропен, т.е. механические и физические свойства по разным направлениям различны.

Таким образом, пластическая деформация, каким бы способом она не производилась (растяжением, сжатием, изгибом, прокаткой, волочением и т.д.), вызывая искажения кристаллической решетки, дробление блоков мозаичной структуры, изменяя форму зерен и образуя текстуру, приводит к изменению всех свойств металлов и сплавов.

Характеристики прочности (твердость, предел прочности, предел упругости, предел текучести) с увеличением степени пластической деформации растут; характеристики пластичности и вязкости (относительное удлинение, относительное сужение, ударная вязкость) падают. В процессе пластической деформации изменяются физические свойства: уменьшается плотность, сопротивляемость коррозии, магнитная проницаемость, увеличивается коэрцитивная сила, увеличивается электросопротивление, изменяется термоэлектродвижущая сила.

Деформация со степенью более 70% увеличивает предел прочности в полтора – два раза, а иногда и в три раза, в зависимости от природы металла и вида обработки давлением. Относительное удлинение при этом снижается в 10–20, а иногда и в 30–40 раз.

Упрочнение металлов и сплавов, полученное в процессе пластической деформации, называется нагартовкой или наклепом .

Состояние металла, возникающее в результате наклепа, является неустойчивым, метастабильным, с повышенной свободной энергией. Поэтому даже при комнатных температурах в нагартованном металлепротекают самопроизвольно диффузионные процессы, приводящие деформированный металл в более равновесное состояние. При повышенных температурах эти процессы протекают быстрее. В зависимости от степени деформации, температуры и времени нагрева в нагартованном металле протекают разные по своему типу структурные изменения, которые подразделяют на две стадии: возврат и рекристаллизацию . В свою очередь стадия возврата включает отдых и полигонизацию, а стадия рекристаллизации – первичную рекристаллизацию (рекристаллизация обработки) и собирательную, или вторичную рекристаллизацию.

При отдыхе (или возврате первого рода) происходит диффузионное перемещение и аннигиляция (взаимное уничтожение) точечных дефектов, уменьшение концентрации вакансий. За сет этого частично снимаются упругие искажения кристаллической решетки и, следовательно, частично восстанавливаются механические и физические свойства. Микроструктура металла и кристаллографическая ориентация его зерен практически не изменяются. Температура отдыха для железа соответствует 300–350ºС.

Полигонизация (или возврат второго рода) протекает при более высокой температуре (для железа 450–500ºС). Она характеризуется тем, что происходит планомерное перемещение дислокаций и группировка дислокаций в ряды (рис. 23). Дислокации выстраиваются друг над другом, образуя вертикальные дислокационные малоугловые границы, которые разделяют соседние субзерна с небольшой разориентировкой решеток. В результате происходит дальнейшее снятие упругих искажений решетки и более полное восстановление физических свойств. Механические свойства при этом изменяются незначительно, т.к. процессы протекают внутри зерна, а сами зерна не изменяют свою форму.

При более высоких температурах (t нр – температура начала рекристаллизации, рис. 24), определенных для каждого материала, начинается процесс образования новых зерен взамен волокнистой

а) б)

Рис. 23. Схема полигонизации:

а – хаотичное распределение дислокаций в изогнутом кристалле; б – стенки из дислокаций после полигонизации

структуры. При этом происходит полное разупрочнение деформированного материала. Механические и физические свойства приобретают прежние значения (см. рис. 24). Образование и рост новых зерен с менее искаженной решеткой за счет исходных деформированных зерен называется рекристаллизацией обработки , или первичной рекристаллизацией. Движущей силой рекристаллизации обработки является энергия искажений деформированных зерен.

Температура начала рекристаллизации (21) зависит от многих факторов и прежде всего от степени деформации материала, химического состава, количества примесей в нем; от природы материала, от величины зерна до деформации, от температуры деформирования. Определено, что

Т рекр = а Т пл. (21)

где Т рекр. – абсолютная температура рекристаллизации;

а – коэффициент, учитывающий вышеперечисленные факторы;

Т пл. – абсолютная температура плавления данного вещества.

Для железа и других металлов технической чистоты минимальная температура рекристаллизации определяется по формуле Л.А. Бочвара (22):

Т рекр = (0,3÷0,4)Т пл (22)

Повышение температуры (t 1 , см. рис. 24) или увеличение времени выдержки приводит к росту зерен, т.е. происходит поглощение мелких, термодинамически неустойчивых зерен более крупными. Такой процесс получил названиесобирательной, или вторичной рекристаллизации. Эта стадия рекристаллизации нежелательна для производства, так как она приводит к образованию разнозернистости.

Температура рекристаллизации играет огромное практическое значение. Чтобы пластическая деформация создавала в материале упрочнение (наклеп), она должна осуществляться при температурах ниже температуры рекристаллизации. Такая обработка давлением называется холодной. Если же обработка давлением производится при температурах выше температуры рекристаллизации, то возникающее при деформации упрочнение будет сниматься процессом рекристаллизации и материал разупрочняется. Такая обработка давлением называетсягорячей.

Термическая операция, заключающаяся в нагреве деформированного материала до температуры выше Т рекр, выдержке и последующем медленном охлаждении (с печью), называетсярекристаллизационным отжигом.

Практически температура рекристаллизационного отжига выбирается выше расчетной обычно на 200–300ºС для ускорения процесса рекристаллизации. Для железа и низкоуглеродистой стали эта температура принимается 650–700ºС.

Рис. 24. Влияние нагрева на механические свойства и микроструктуру холоднодеформированного металла

Установлено, что зерно растет особенно сильно после небольшой степени деформации, называемой критической степенью деформации ε кр. (рис. 25).

Критическая степень деформации для железа равна 5–6%; для малоуглеродистой стали 7–15%.

При критической степени деформации возможно взаимное уничтожение дислокаций при тепловом их движении, что способствует постепенному уменьшению количества дислокаций на границах зерен и слиянию нескольких зерен в одно крупное.

Критическую степень деформации следует избегать, так как после рекристаллизационного отжига крупнозернистая структура обладает пониженной ударной вязкостью, более низкими σ в, σ 0,2 и δ.

Рис. 25. Влияние степени деформации на размер зерна после рекристаллизационного отжига

Предел выносливости обозначается (или ), где индекс R соответствует коэффициенту асимметрии цикла. Так, например, для симметричного цикла он обозначается , для отнулевого цикла (при ), для постоянного цикла .

Предел выносливости при симметричном цикле является наименьшим по сравнению с другими видами циклов, то есть .

Так, например, ; .

предел ограниченной выносливости

Для расчета деталей, не предназначенных к длительной эксплуатации, возникает необходимость в определении наибольшего значения напряжения, которое может выдержать материал при заданном числе циклов (N), значение которого меньше, чем базовое (). В этом случае по кривой усталости и заданному числу циклов (N) определяется соответствующее напряжение (), называемое пределом ограниченной выносливости .

Факторы предела выносливости при симметричном цикле

При оценке прочности детали, работающей в условиях статического нагружения, механические характеристики материала детали полностью отождествляются с механическими характеристиками материала образца, полученными в результате эксперимента. При этом не учитывается разница ни в форме, ни в размерах детали и образца, ни некоторые другие отличия.

При расчете детали на усталость необходимо учитывать упомянутые факторы. К наиболее существенным факторам, которые влияют на предел выносливости при симметричном цикле, относятся концентрация напряжений, абсолютные размеры поперечного сечения детали и шероховатость ее поверхности. Это легко объясняется тем, что все упомянутые факторы способствуют возникновению и распространению микротрещин.

Влияние концентрации напряжений

Вблизи выточек, у краев отверстий, в местах изменения формы стержня, у надрезов и т.п. наблюдается резкое увеличение напряжений по сравнению с номинальными напряжениями, вычисленными по обычным формулам сопротивления материалов. Такое явление называется концентрацией напряжений , а причина, вызывающая значительный рост напряжений – концентратором напряжений .

Зона распространения повышенных напряжений носит чисто местный характер, поэтому эти напряжения часто называют местными.

При напряжениях, переменных во времени, наличие концентратора напряжений на образце приводит к снижению предела выносливости. Это объясняется тем, что многократное изменение напряжений в зоне очага концентрации напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением образца.

Для того чтобы оценить влияние концентрации напряжений на снижение сопротивления усталости образца с учетом чувствительности материала к концентрации напряжений, вводят понятие эффективного коэффициента концентрации, который представляет собой отношение предела выносливости стандартного образца без концентрации напряжений к пределу выносливости образца с концентрацией напряжений: (или ).

Влияние абсолютных размеров поперечного сечения

С увеличением размеров поперечных сечений образцов происходит уменьшение предела выносливости . Это влияние учитывается коэффициентом влияния абсолютных размеров поперечного сечения (ранее этот коэффициент назывался масштабным фактором). Упомянутый коэффициент, равен отношению предела выносливости гладких образцов диаметром d к пределу выносливости гладкого стандартного образца диаметром, равным 7,5 мм: (или ).

Шероховатость поверхности

Механическая обработка поверхности детали оказывает существенное влияние на предел выносливости. Это связано с тем, что более грубая обработка поверхности детали создает дополнительные места для концентраторов напряжений и, следовательно, приводит к возникновению дополнительных условий для появления микротрещин.

Предел выносливости материала определяется путем испытания идентичных образцов при различных значениях σ max , но при неизменном коэффициенте асимметрии R и регистрации количества циклов, при котором происходит разрушение каждого образца.

Для этой цели используется партия (не менее 10-30), образцов обычно круглого сечения диаметром 7-10 мм. Во избежание концентрации напряжений образцам придается плавная форма, а поверхность тщательно шлифуется или полируется (рис. 17.6).

Предел выносливости зависит от размеров поперечного сечения образца. Поэтому всегда указывается, на образцах какого диаметра определялась эта усталостная характеристика.

Первый образец испытываемой партии нагружается так, чтобы максимальные напряжения превышали предел выносливости при данном коэффициенте асимметрии цикла, и по счетчику на усталостной машине, устанавливается количество циклов, которое выдержал образец перед разрушением.

Количество циклов, выдерживаемых образцом или деталью перед разрушением, называется циклической долговечностью.

В каждом последующем образце при том же коэффициенте асимметрии цикла создается максимальное напряжение, меньшее, чем в предыдущем, а также регистрируется число N циклов, при котором эти образцы разрушаются.

Результаты испытаний представляются графически в виде кривой усталости . По оси ординат откладывается σ max - максимальное напряжение цикла, при котором испытывался образец, а по оси абсцисс - число N циклов, которое выдержал образец перед разрушением.

Обычно на каждом уровне напряжений σ max испытывается несколько образцов, и по результатам испытаний определяется среднее значение разрушающего числа циклов. Именно это значение N и откладывается по оси абсцисс при построении кривых усталости. Различные виды кривых усталости приведены на рисунках 17.7-17.9.

Эксперименты показывают, что кривая усталости образцов из большинства конструкционных сталей и легких (алюминиевых, магниевых, титановых и др.) сплавов, асимптотически приближается к горизонтальной прямой. Отрезок, отсекаемый этой прямой на оси ординат, определяет предел неограниченной выносливости материала σ R или τ R при данном коэффициенте асимметрии цикла R (см. рис. 17.7).

Часто кривые усталости строят в полулогарифмических или двойных логарифмических координатах, откладывая по оси абсцисс логарифм числа циклов lgN , соответствующих разрушению образца, а по оси ординат - максимальное напряжение цикла σ max или lg σ max . Кривая усталости в полулогарифмических координатах имеет вид, представленный на рис. 17.8. Она состоит из двух прямых, причем вторая прямая почти горизонтальна.

Для деталей машин и натурных элементов конструкций, не существует такого числа циклов, выдержав которые образец не разрушается при дальнейшем испытании, и поэтому кривые усталости не имеют горизонтальной асимптоты (рис. 17.9).

В таких случаях можно говорить лишь о пределе ограниченной выносливости.

Для сталей предел ограниченной выносливости, определенный на базе N б = 10 7 циклов можно принять за предел выносливости, так как если стальной образец выдержал 10 7 циклов, то он может выдержать практически неограниченное число циклов. Для цветных металлов за предел выносливости принимается ограниченный предел, определенный на базе от 5·10 7 до 10 8 циклов.

При оценке прочности и ресурса элементов конструкций необходимо располагать уравнением кривой усталости . Применительно к сплавам на железной основе хорошее соответствие экспериментальным данным при симметричном цикле нагружения в широком диапазоне долговечности имеет уравнение Стромейра:

Для гладких и надрезанных образцов различных типоразмеров из деформируемых алюминиевых сплавов, а также для натурных элементов конструкций (лонжерон лопасти несущего винта вертолета, лопасть винта самолета, бурильные трубы) параметр β уравнения (17.10) считают постоянным и равным β =2 . Для аналитического описания левой ветви кривой усталости при отсутствии необходимости экстраполяции опытных данных в область малых N <10 5 и больших N>10 5 долговечностей используют уравнение

,

полученное из уравнения (17.10) для σ -1 =0 .

Если испытания на усталость проводят при асимметричном цикле напряжений с постоянным коэффициентом асимметрии R (при изменяющемся среднем значении напряжения цикла σ m ), то в формулах (17.4-17.11) вместо σ a подставляют максимальное напряжение цикла σ max и вместо предела неограниченной выносливости при симметричном цикле σ -1 подставляют предел неограниченной выносливости при асимметричном цикле σ R . В случае испытаний при σ m =const в указанных формулах вместо σ -1 подставляют предельную амплитуду цикла σ a / , соответствующую неограниченной долговечности.

Результаты экспериментальных исследований показали, что пределы выносливости одного и того же материала при растяжении и кручении меньше предела выносливости при изгибе. Например, при симметричном цикле предел выносливости при растяжении

,

а при кручении

,

где σ -1 - предел выносливости при изгибе. В справочной литературе обычно приводятся значения σ -1 , полученные по результатам испытаний на переменный изгиб.

Были предприняты многочисленные исследования для установления связи предела выносливости σ -1 с другими механическими характеристиками материала. Эти исследования показали, что для сталей

а для цветных металлов зависимость менее определенна:

,

где σ в - предел прочности материала.

Данные соотношения надо рассматривать как ориентировочные, но они показывают, что предел выносливости для некоторых цветных металлов почти в четыре раза меньше предела прочности.

Предел выносливости

Преде́л выно́сливости (также преде́л уста́лости ) - в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость , то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.

Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклических нагружений.

Предел выносливости обозначают как , где коэффициент R принимается равным коэффициенту асимметрии цикла. Таким образом, предел выносливости материала в случае симметричных циклов нагружения обозначают как , а в случае пульсационных как .

Установлено, что, как правило, для сталей предел выносливости при изгибе составляет половину от предела прочности:

Практическое применение диаграммы предельных амплитуд заключается в том, что после построения диаграммы, проводятся испытания на только конкретные значения и . Если рабочая точка располагается под кривой, то образец способен выдержать неограниченное количество циклов, если над кривой - ограниченное.

См. также

Литература

  • Феодосьев В. И. Сопротивление материалов. - М.: Изд-во МГТУ им. Н. Э. Баумана, 1999. С. 479-483. ISBN 5-7038-1340-9

Wikimedia Foundation . 2010 .

Смотреть что такое "Предел выносливости" в других словарях:

    предел выносливости - предел выносливости: Максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение при базе испытания. Примечание Пределы выносливости выражают в номинальных напряжениях. [ГОСТ 23207 78, статья 47]… … Словарь-справочник терминов нормативно-технической документации

    предел выносливости - Наибольшее напряжение, при котором материал в состоянии выдержать заданное большое число циклов нагружения [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN endurance limitfatigue strength DE… … Справочник технического переводчика

    Fatigue limit Предел выносливости. Максимальное напряжение, которое может привести к образованию усталостной трещины при точно установленном числе циклов напряжения. Должно быть установлено значение максимального напряжения и коэффициента роста… … Словарь металлургических терминов

    Предел уста л о с т и. мехинич. хар ка материалов; наибольшее напряжение цикла, к рое материал может выдержать повторно N раз без разрушения, где N заданное технич. условиями большое число (напр., 106, 107, 108). Обозначается бr, где r коэфф.… … Большой энциклопедический политехнический словарь

    предел выносливости - максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостного разрушения до базы испытания (предварительно задаваемое наибольшая длительность испытаний на усталость … Энциклопедический словарь по металлургии

    Наибольшее напряжение, при котором материал в состоянии выдержать заданное большое число циклов нагружения (Болгарский язык; Български) граница на издръжливост (Чешский язык; Čeština) mez únavy (Немецкий язык; Deutsch) Dauerfestigkeitsgrenze… … Строительный словарь

    ПРЕДЕЛ ВЫНОСЛИВОСТИ - максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение до базы испытания (предварительно задаваемая наибольшая длительность испытаний на усталость,… … Металлургический словарь

Для расчетов на прочность при повторно-переменных напря­жениях требуются механические характеристики материала. Они определяются испытанием на выносливость серии стандартных (тщательно отполированных) образцов на специальных маши­нах. Наиболее простым является испытание на изгиб при симмет­ричном цикле напряжений.

Задавая образцам различные значения напряжений о мах> оп­ределяют число циклов N, при котором произошло их разрушение.

Рис. 3.4. Кривая усталости

По полученным данным строят кривую в координата (Углах --N, называемую кривой усталости (рис. 3.4).

Испытания показывают, что, начиная с некоторого напряжения, кривая стремится к горизонтальной асимптоте. Это озна­чает, что при определенном напряжении o r образец, не разруша­ясь, может выдержать бесконечно большое число циклов нагружения. Опыт показывает, что стальной образец, выдержавший Nо=10 7 циклов, может их выдержать неограниченно много.

Число циклов Nо называют базой испытании. При испытании образца после прохождения No циклов опыт прекращают. Для закаленных сталей и цветных металлов No =10 8 .

Напряжение, соответствующее No, принимают за предел вы­носливости.

Пределом выносливости называется наибольшее напряжение, при котором образец или деталь может сопротив­ляться без разрушения неограниченно долго, и обозначается а я для образца и (o r } d для детали.

Для образцов и деталей при коэффициенте асимметрии цик­ла R= - 1 предел выносли- вости при нормальных напряжениях обозначаются о – 1 и (о - 1) D , а при отнулевом цикле (R=0) соответсвенно о 0 и (о 0) D

При отсутствии в таблицах экспериментальных данных для определения пределов выносливости принимают эмпирические соотношения. Так, например, для углеродистой стали.



© imht.ru, 2024
Бизнес-процессы. Инвестиции. Мотивация. Планирование. Реализация